4. Integration by Parts

Recall:       \(\displaystyle \int u\,dv=u\,v-\int v\,du\)   where   \(du=\dfrac{du}{dx}\,dx\)   and   \(dv=\dfrac{dv}{dx}\,dx\)

c. Definite Integrals

The integration by parts formula also has a version for definite integrals:


      \(\displaystyle \int_a^b u\,dv=\left[u\,v\rule{0pt}{10pt}\right]_a^b-\int_a^b v\,du\)   where   \(du=\dfrac{du}{dx}\,dx\)   and   \(dv=\dfrac{dv}{dx}\,dx\)

Compute\(\displaystyle \int_0^1 3x^2\arctan x\,dx\).

We apply integration by parts with \[\begin{array}{ll} u=\arctan x & dv=3x^2\,dx \\ du=\dfrac{1}{1+x^2}\,dx \quad & v=x^3 \end{array}\] So: \[\begin{aligned} \int_0^1 3x^2\arctan x\,dx &=\left[x^3\arctan x\right]_0^1-\int_0^1 \dfrac{x^3}{1+x^2}\,dx \\ &=1^3\arctan 1-0^3\arctan 0-\int_0^1 \dfrac{x^3}{1+x^2}\,dx \end{aligned}\] For the integrated part, recall \(\arctan 1=\dfrac{\pi}{4}\) and \(\arctan 0=0\). For the remaining integral, we substitute \(z=1+x^2\). Then \(dz=2x\,dx\) and so \(x\,dx=\dfrac{1}{2}\,dz\) and \(x^2=z-1\). We also change limits. Thus: \[\begin{aligned} \int_0^1 3x^2\arctan x\,dx &=\dfrac{\pi}{4}-\int_1^2 \dfrac{z-1}{z}\dfrac{1}{2}\,dz\ \\ &=\dfrac{\pi}{4}-\dfrac{1}{2}\int_1^2 \left(1-\dfrac{1}{z}\right)\,dz \\ &=\dfrac{\pi}{4}-\dfrac{1}{2}\left[\dfrac{}{}z-\ln|z|\right]_1^2 \\ &=\dfrac{\pi}{4}-\dfrac{1}{2}\left[2-\ln(2)\right]+\dfrac{1}{2}[1] \\ &=\dfrac{\pi}{4}-\dfrac{1}{2}+\dfrac{1}{2}\ln(2) \end{aligned}\] Of course, you can always compute a definite integral by first finding the indefinite integral and then evaluating at the limits. \[\begin{aligned} \int 3x^2\arctan x\,dx &=x^3\arctan x-\dfrac{1}{2}(1+x^2)+\dfrac{1}{2}\ln(1+x^2)+C \\ \int_0^1 3x^2\arctan x\,dx &=\left[x^3\arctan x-\dfrac{1}{2}x^2+\dfrac{1}{2}\ln(1+x^2)\right]_0^1 \\ &=\dfrac{\pi}{4}-\dfrac{1}{2}+\dfrac{1}{2}\ln(2) \end{aligned}\]

The benefit of doing the indefinite integral first is that we can check it before going on to the definite integral.

Compute \(\displaystyle \int_{-1}^3 xe^{-4x}\,dx\).

\(\displaystyle \int_{-1}^3 xe^{-4x}\,dx =-\,\dfrac{13}{16}e^{-12}-\dfrac{3}{16}e^4\)

We select the parts: \[\begin{array}{ll} u=x & dv=e^{-4x}\,dx \\ du=\,dx \quad & v=-\,\dfrac{1}{4}e^{-4x} \end{array}\] We compute: \[\begin{aligned} \int xe^{-4x}\,dx &=-\,\dfrac{1}{4}xe^{-4x}+\dfrac{1}{4}\int e^{-4x}\,dx \\ &=-\,\dfrac{1}{4}xe^{-4x}-\dfrac{1}{16}e^{-4x}+C \\ \int_{-1}^{3} xe^{-4x}\,dx &=\left[-\,\dfrac{1}{4}xe^{-4x}-\dfrac{1}{16}e^{-4x}\right]_{-1}^{3} \\ &=-\,\dfrac{13}{16}e^{-12}-\dfrac{3}{16}e^4 \end{aligned}\]

We can check the indefinite integral by differentiating. If \(f=-\,\dfrac{1}{4}xe^{-4x}-\dfrac{1}{16}e^{-4x}\), then \[ f'=-\,\dfrac{1}{4}e^{-4x}+xe^{-4x}+\dfrac{1}{4}e^{-4x} =xe^{-4x} \]

Compute \(\displaystyle \int_0^1 xe^{(x-1)}\,dx\).

\(0\)

\(e\)

\(e^{-1}\)

\(1\)

A. Incorrect. The correct selection of parts is \[\begin{array}{ll} u=x & dv=e^{(x-1)}dx \\ du=dx \quad & v=e^{(x-1)} \end{array}\] Try it.

B. Incorrect. The correct selection of parts is \[\begin{array}{ll} u=x & dv=e^{(x-1)}dx \\ du=dx \quad & v=e^{(x-1)} \end{array}\] Then \[ \int_0^1 xe^{(x-1)}dx =\left[xe^{(x-1)}\right]_0^1-\int_0^1 e^{(x-1)}\,dx \] Finish this.

C. Correct. The correct selection of parts is \[\begin{array}{ll} u=x & dv=e^{(x-1)}dx \\ du=dx \quad & v=e^{(x-1)} \end{array}\] Then \[\begin{aligned} \int_0^1 xe^{(x-1)}dx =\left[xe^{(x-1)}\right]_0^1-\int_0^1 e^{(x-1)}\,dx \\ =1e^0-0e^{-1}-\left[e^{(x-1)}\right]_0^1 \\ =1-\left(e^0-e^{-1}\right)=e^{-1} \end{aligned}\] Good work!

D. Sorry, that's not right. The correct selection of parts is \[\begin{array}{ll} u=x & dv=e^{(x-1)}dx \\ du=dx \quad & v=e^{(x-1)} \end{array}\] Then \[ \int_0^1 xe^{(x-1)}dx =\left[xe^{(x-1)}\right]_0^1-\int_0^1 e^{(x-1)}\,dx \] Finish this.

You can also practice computing definite integrals using Integration by Parts by using the following Maplet (requires Maple on the computer where this is executed):

Integration by PartsRate It

© MYMathApps

Supported in part by NSF Grant #1123255